An LQT mutant minK alters KvLQT1 trafficking.

نویسندگان

  • Andrew Krumerman
  • Xiaohong Gao
  • Jin-Song Bian
  • Yonathan F Melman
  • Anna Kagan
  • Thomas V McDonald
چکیده

Cardiac I(Ks), the slowly activated delayed-rectifier K(+) current, is produced by the protein complex composed of alpha- and beta-subunits: KvLQT1 and minK. Mutations of genes encoding KvLQT1 and minK are responsible for the hereditary long QT syndrome (loci LQT1 and LQT5, respectively). MinK-L51H fails to traffic to the cell surface, thereby failing to produce effective I(Ks). We examined the effects that minK-L51H and an endoplasmic reticulum (ER)-targeted minK (minK-ER) exerted over the electrophysiology and biosynthesis of coexpressed KvLQT1. Both minK-L51H and minK-ER were sequestered primarily in the ER as confirmed by lack of plasma membrane expression. Glycosylation and immunofluorescence patterns of minK-L51H were qualitatively different for minK-ER, suggesting differences in trafficking. Cotransfection with the minK mutants resulted in reduced surface expression of KvLQT1 as assayed by whole cell voltage clamp and immunofluorescence. MinK-L51H reduced current amplitude by 91% compared with wild-type (WT) minK/KvLQT1, and the residual current was identical to KvLQT1 without minK. The phenotype of minK-L51H on I(Ks) was not dominant because coexpressed WT minK rescued the current and surface expression. Collectively, our data suggest that ER quality control prevents minK-L51H/KvLQT1 complexes from trafficking to the plasma membrane, resulting in decreased I(Ks). This is the first demonstration that a minK LQT mutation is capable of conferring trafficking defects onto its associated alpha-subunit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Protein and Vesicle Trafficking, Cytoskeleton An LQT mutant minK alters KvLQT1 trafficking

Krumerman, Andrew, Xiaohong Gao, Jin-Song Bian, Yonathan F. Melman, Anna Kagan, and Thomas V. McDonald. An LQT mutant minK alters KvLQT1 trafficking. Am J Physiol Cell Physiol 286: C1453–C1463, 2004. First published February 4, 2004; 10.1152/ajpcell.00275.2003.—Cardiac IKs, the slowly activated delayed-rectifier K current, is produced by the protein complex composed of and -subunits: KvLQT1 and...

متن کامل

Homozygous deletion in KVLQT1 associated with Jervell and Lange-Nielsen syndrome.

BACKGROUND Long-QT (LQT) syndrome is a cardiac disorder that causes syncope, seizures, and sudden death from ventricular arrhythmias, specifically torsade de pointes. Both autosomal dominant LQT (Romano-Ward syndrome) and autosomal recessive LQT (Jervell and Lange-Nielsen syndrome, JLNS) have been reported. Heterozygous mutations in 3 potassium channel genes, KVLQT1, KCNE1 (minK), and HERG, and...

متن کامل

Mink Subdomains That Mediate Modulation of and Association with Kvlqt1

KvLQT1 is a voltage-gated potassium channel expressed in cardiac cells that is critical for myocardial repolarization. When expressed alone in heterologous expression systems, KvLQT1 channels exhibit a rapidly activating potassium current that slowly deactivates. MinK, a 129 amino acid protein containing one transmembrane-spanning domain modulates KvLQT1, greatly slowing activation, increasing ...

متن کامل

Pore mutants of HERG and KvLQT1 downregulate the reciprocal currents in stable cell lines.

We previously reported a transgenic rabbit model of long QT syndrome based on overexpression of pore mutants of repolarizing K(+) channels KvLQT1 (LQT1) and HERG (LQT2).The transgenes in these rabbits eliminated the slow and fast components of the delayed rectifier K(+) current (I(Ks) and I(Kr), respectively), as expected. Interestingly, the expressed pore mutants of HERG and KvLQT1 downregulat...

متن کامل

Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits.

Long QT syndrome is an inherited disorder of cardiac repolarization caused by mutations in cardiac ion channel genes, including KVLQT1. In this study, the functional consequences of three long QT-associated missense mutations in KvLQT1 (R243C, W248R, E261K) were characterized using the Xenopus oocyte heterologous expression system and two-microelectrode voltage clamp techniques. These mutations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 286 6  شماره 

صفحات  -

تاریخ انتشار 2004